Mobilizing Patients on ECMO

Vincent Lo PT
Critical Care Physiotherapist
Medical Surgical Intensive Care Unit
University Health Network
Toronto General Hospital
Daily activity maintains physical function
Consequences of Prolonged Bed Rest

- Bed sores, venous thrombosis
- Muscle atrophy
- Profound ICU acquired weakness
- Deconditioning (Weaning)
- Poor long term outcomes QOL
Early Mobility
Early Mobility
Helene Campbell

- 21 y.o. lung Tx recipient raising awareness for organ donation
What about our ECLS patients?
ECLS Mobility

- 46 y.o. male resp failure, rupt abdo abscess, ARDS req. VV ECMO via R IJ Avalon

- Marching on spot, t/f chair
Not all ECMO patients are appropriate for early mobility

- Depends on circumstances of their admission
- LOC, ability to participate
- Physical condition, capability, activity tolerance
- General medical stability
- Stable on ECMO (hemodynamic, pO\textsubscript{2}, pCO\textsubscript{2}, no bleeding)
- Goals of care
Guidelines for Mobility
(any ICU patient)

- Awake, obeys commands, adequate strength
- Cardiac stability
  - HR 50 - 140 bpm
  - No serious arrhythmias or MI in past 24 hrs
    (Trops trend down)
- Hemodynamically stability
  - SBP 80 - 180 mmHg
  - MAP > 65 mmHg
  - Low dose inotropes, stable trend
- No significant bleeding past 24 hrs
  - Plt > 20, INR < 3, afebrile T<39°
Guidelines for Mobility
(any ICU patient)

- Respiratory stability - (?mech vent)
  - Resting FiO₂ < 80 - 90% (any room to increase FiO₂?)
  - pO₂ > 60 mmHg
  - pCO₂ < 80 mmHg (exception: gradual acclimatization)
  - pH > 7.25
  - RR < 40 bpm

- Other factors
  - Anxiety
  - N+V
  - Delirium
ECMO Variables

- Flow 0 - 5 (10 lpm EXCEPTIONAL)
- Gas Sweep 0 - 10 (CO₂ elimination)
- ACT levels 160 - 180 sec
- Trend over past 12 - 24 hrs
Procedure

- Plan mobility session (think about contingency plans)
- Assemble personnel
- Set-up room
- Minimize and clear lines + tubes
- Designate roles for each team member:
  - MD available on standby
  - PT manages patient
  - Perfusionist manages ECMO circuit and cannula
  - RN manages IV poles, tubing, bed, chair or guards the patient
- Mobilize in stages (HOB, Dangle, Stand, Step etc)
Room Set-up

- Treadmill positioned perpendicular to bed
Case 1

- 47 y.o. female end-stage COPD emphysema VV ECMO via R IJ bridge to transplant
Case 1

- 47 y.o. female end-stage emphysema
- VV ECMO via R IJ bridge to transplant
Case 1

- Up in chair 2-6 hrs/day
Case 2

- 22 y.o. male prev DLTx deteriorating, placed on VV ECMO via R IJ Avalon as bridge to re-transplantation

- Ambulating daily on treadmill and up in chair
Case 2

- 22 y.o. male prev DLTx deteriorating, placed on VV ECMO via R IJ Avalon as bridge to re-transplantation

- Ambulating daily on treadmill and up in chair
Case 3  • 29 y.o. male on VV ECMO via R subclavian cannula x 3 months before re-transplantation
Case 3 • 29 y.o. male on VV ECMO via R subclavian cannula x 3 months before re-transplantation
Case 3

- Petal bike
  5-10
  mins/day
Case 3

- Discharge - going home and ambulatory!
Case 3

- Enjoying life again!

Halloween and Charity Cycling Event
Case 4 • 44 y.o. female VA ECMO via R femoral cannula
Case 4

- 44 y.o. female VA ECMO via R femoral cannula
Case 5 • 36 y.o. female ARDS
What about non-ambulatory ECLS patients?

Case 5

- 36 y.o. female ARDS
- VV ECMO via R IJ Avalon
- $pO_2 = 54$ mmHg
- Blood oozing at every site
- Hemoptysis
- Never stable on ECMO
Case 5

- PROM, NMES
- Rehab post ECMO
Case 5

- Home after 8 weeks
Case 5

- Visiting MSICU ten months later
Case 6

- Rehab after 5 weeks on ECMO and complete bed rest
Case 6

- Rehab after 5 weeks ECMO and complete bed rest
Conclusion

• Earlier you start the better, weakness becomes worse with prolonged bed rest

• Need good team dynamics/collaboration

• Proper screening and troubleshooting select suitable candidates

• Exercise tolerance may vary day to day

• Mobilizing ECLS patients can be done safely

• Thank you!
References


